ИНФОРМАЦИЯ

МАРКИ СССР 1961-1991 по сериям

Интересное о Филателии
все статьи -->

Бабочки в архитектуре и скульптуре мира, отраженной в филателии

Филателистическая программа XII Всемирного фестиваля молодёжи и студентов

По следам наших публикаций. Не каталожные разновидности цвета

Фестиваль молодежи — фестиваль мира


Главная  /  Электричество, которое сначала открыли, а затем изобрели

Поиск по статьям:

Электричество, которое сначала открыли, а затем изобрели

2023-12-08 11:28:24, Рубрики: ФИЛАТЕЛИЯ.РУ

Это началось еще с древних времен, когда нашли магнитные руды, которые могли притягивать к себе железные предметы и ориентироваться в пространстве строго в определенном направлении. Назвали их магнитами, вероятнее всего, по названию территории Магнисии на месте современного Измира в Турции.

Но еще были известны янтарь и стекло, которые, если их потереть, тоже становились магнитами, но притягивали совсем другие предметы.

Современная наука об электричестве начала формироваться в XVI веке. И не без помощи коронованных особ, в частности Елизаветы I. 

Во времена испанской Армады корабельный компа́с играл не последнюю роль 

Первым, кто отделил магниты от веществ, способных электризоваться и притягивать к себе мелкие частицы, был Уильям Джильберт. Он считал, что природное магнитное железо стало таким благодаря Земле, которая сама является большим магнитом. Поэтому компас и ориентируется строго по полюсам. Еще ученого заинтересовал «эффект янтаря», и с его подачи появился термин «электричество». В своих печатных работах он впервые разделил магнетизм и статическое электричество.

«Уильям Джильберт демонстрирует магнит королеве Елизавете I в 1598 году». Худ. Эрнест Борд

Шарль Франсуа Дюфе выявил два рода электричества – «стеклянное» и «смоляное». Первое получается при натирании стекла, шерсти животных. Второе – при использовании янтаря, смолы. Разнородные электричества притягиваются друг к друг, однородные – отталкиваются. А это уже первая электрическая теория.

Вскоре появится первая электрическая машина трения. Отто фон Герике бросил демонстрировать свои Магдебургские колокола и создал, вращающийся на металлическом стержне, шар из чистой серы, который электризовался от трения о руки человека. Герике показал, что заряд можно передавать на расстояние посредством льняной нити – первым рукотворным проводником электричества.

В 1745 году, в славном научном граде Лейден, был создан первый конденсатор, позволяющий копить и сохранять полученный электрический заряд. Автором изобретения считается голландец Питер ван Мушенбрук.

Устройство назвали «лейденской банкой». Это стеклянный сосуд, оклеенный снаружи листовым оловом. Внутри было листовое олово или обычная вода. Для контакта с внутренней обкладкой, через горловину вставляли металлический прут. Такое устройство можно было заряжать статическим электричеством.

На основе этого изобретения создали первую электрическую цепь с последовательным соединением проводников. Было это во времена Людовика XV. Его сподвижник, физик и аббат Жан-Антуан Нолле, изобретатель электроскопа, демонстрировал перед королем в Версале как 180 мушкетеров, взявшись крепко за руки, словно по команде, одновременно вскрикивали и делали судорожные движения. Скорость распространения электричества была практически мгновенная.

Позже в таком же эксперименте поучаствуют 200 духовных братьев из парижских монастырей, составивших цепь контуженных монахов. Это стало самым модным зрелищем той поры. Многие смельчаки из публики хотели на себе испытать удар электрического разряда от «банки смерти».

Практически сразу же после этого наступило время человека «отнявшего молнию у небес и власть у тиранов». Конституцию Соединенных Штатов Америки отставим в сторону и поговорим о вкладе Бенджамина Франклина в развитие учения об электричестве.

Во-первых, он изменил теорию Дюфе о двух родах электричества. Электричество бывает только одно. Разделение материалов на два класса объясняется избытком или недостатком этого самого электричества. У «стеклянного» электричества имеется избыток, поэтому это «+». У «смоляного» - недостаток, поэтому это «-».

Во-вторых, о существовании электрона еще никто не подозревал, но заряд уже перемещался от плюса, где его много, к минусу, где его мало.

В-третьих, заряд мог концентрироваться на острых выступах предметов и даже стекать с них, электризуя воздух. На опытах было показано, как заряд с острия иглы сдувает пламя свечи или вращает колесо, создавая движущую силу (колесо Франклина). Это свойство стекания заряда с острия позволило при изучении природы молнии создать от нее защиту в виде громоотвода. Атмосферное электричество имеет ту же природу, что и получаемое от трения в лабораторных условиях и быту.

Среди ученых, занимавшихся изучением электричества, был один, который интересовался не столько его природой, но и тем, как измерить величину зарядов и силу взаимодействия между ними.

Наверное, вы уже догадались, что речь идет о Шарле Кулоне и его законе.

Оказалось, что заряды взаимодействуют так же, как и планеты в законе Всемирного тяготения. Это было установлено с помощью крутильных весов, изобретенных Кулоном.

Полученная формула – почти калька с закона тяготения Исаака Ньютона. Заряды выступают вместо масс планет. Гравитационная постоянная была заменена на относительную диэлектрическую проницаемость среды k. Разница в том, что заряды могут еще и отталкиваться друг от друга. Все зависит от их знака. Поэтому значения величин берутся по модулю. Прослеживается общность законов природы. Как яблоко Ньютона притягивает к себе Землю, так и сухие волосы притягиваются к расчестке.

Электричество становилось точной наукой. Не хватало только общей теории. Исправил ситуацию Георг Ом. Он, введя понятие сопротивления R, теоретически, с практическим подтверждением результатов, открыл свой знаменитый закон. Сила тока во всех точках электрической цепи одинакова. Зависит от электродвижущей силы и сопротивления цепи.

Такой простой закон был принят научным сообщество скептически. Официально он стал законом, когда появилось подтверждение в виде законов Густава Кирхгофа о ветвлении токов и всеобщего закона сохранения энергии Германа Гельмгольца.

Настало время изобретения электричества. Знаний было накоплено уже достаточно. Сделали это Луиджи Гальвани и Алессандро Вольта. Первый, препарируя лягушку рядом с электрической машиной, обратил внимание, что мышцы земноводного сокращаются под воздействием электрического заряда. Второй, очень внимательный человек, заметил, что это происходит, если электрическая цепь замкнута, а в качестве проводников используются разнородные металлы.

Все знают с детства, как пощипывает на языке контакты батарейки, и какой у нее вкус – с кислинкой. Вольтов столб состоял из пар разнородных пластин, например, цинк и медь. Между ними – прокладка из бумаги, пропитанная щелочным раствором. Такая конструкция генерировала постоянный ток. Цинковая пластина давала минус, медная – плюс. Такую ячейку назвали гальваническим элементом. Вольта установил свой первый стандартный ряд электродных потенциалов: Zn→Pb→Sn→Fe→Cu→Ag→Au→C. Сила генератора постоянного тока зависела от выбора пары элементов из этого ряда и их количества.

В 1800 году наступила эра электричества. Благодаря Алессандро Вольта мир получил генератор постоянного тока. Был создан первый источник освещения электрическим током. Авторство принадлежит русскому ученому Василию Петрову. Собрав в 1803 году вольтов столб из 4200 медных и цинковых кругов и напряжением в 1700 вольт, он осветил светом комнату от электрической дуги. Вот только почтовую марку в его честь выпустить не представляется невозможным. История не сохранила ни одного его портрета.

Но есть почтовые миниатюры, посвященные изобретениям Павлу Яблочкову и Николаю Бенардосу, которые тоже нашли практическое применение дуге Вольта.

Гальванизм – новый термин. Потом его назовут электролизом. Он пришелся по душе химикам. Взяв воду из реки и пропустив через нее ток, они получили на разных полюсах водород и кислород. Причем водорода по объему получилось в два раза больше, чем кислорода. Чем не химическая формула Н2О?

Хамфри Дэви стал основоположником первой электрохимической теории. С помощью электрического тока он получил новые элементы: калий, натрий, магний, стронций, барий, кальций, литий. А приняв на работу в лабораторию мыть пробирки молодого подмастерья переплетчика, дал миру Майкла Фарадея. Его электрохимическую теорию поддержал Йёнс Якоб Берцелиус. Все атомы в веществе несут либо положительный, либо отрицательный заряд. Мы и сейчас химические формулы пишем, как завещал великий Берцелиус, присваивая атомам ту или иную валентность.

В 1819 году ученые опять вернулись к магниту и больше с ним не расставались. Ханс Эрстед сделал открытие – воздействие электрического тока на магнитную стрелку. Над магнитной стрелкой помещался прямолинейный провод, направленный ей параллельно, т.е. с юга на север. При пропускании электрического тока стрелка поворачивалась перпендикулярно проводнику. Обратное направление тока приводило к повороту стрелки на 180 градусов. И все равно, перпендикулярность оставалась прежней, даже при криволинейном проводе (для каждого участка она была своя). Теперь электрический ток и магнит будут неразрывно вместе, а их поля останутся взаимно перпендикулярными.

Андре-Мари Ампер был первым, кто теоретически обосновал связь между электричеством и магнетизмом. К этому его подтолкнул его друг Доминик Араго, который установил, что провод с током намагничивает железные опилки. По сути, это был первый электромагнит.

Ампер пошел дальше. Уже два параллельных провода, при пропускании по ним тока, начинали притягиваться или отталкиваться друг от друга. В результате многочисленных опытов был сделан вывод о единой сущности электричества и магнетизма. И были заложены основы нового направления физики – электродинамики.

Электродинамика как самостоятельная наука начала развиваться, когда Майкл Фарадей решил превратить магнетизм в электричество. И выполнил эту задачу с блеском. Попытка использовать электромагнит в обратном направлении – с помощью магнита получить электрический ток – привела к открытию электромагнитной индукции. Изменение внешнего магнитного поля вызвало появление электродвижущей силы в проводнике. В результате был построен первый электрогенератор постоянного тока.

Второе направление исследований Фарадея – электрохимия. Без открытых им двух законов, связанных с электролизом, невозможно представить сегодняшнее получение алюминия и меди, водорода и хлора. Есть еще масштабное производство аккумуляторов. Кроме этого, существуют промышленные процессы по нанесению защитных покрытий (гальваностегия, анодирование), воспроизведение форм предметов (гальванопластика). Так что, идея гальванизма живет и процветает.

В 1865 году Джеймс Ма́ксвелл публикует свою статью «Динамическая теория электромагнитного поля», которая должна была поменять мировоззрение ученых мужей в области естествознания. Однако произошло обратное – развитие физики затормозилось почти на 20 лет. Это Евангелие от Джеймса просто игнорировалось. Физики испытывали затруднения из-за обилия сложных дифференциальных уравнений в частных производных. Инерция восприятия физики только на уровне формул вроде U=RI давала о себе знать. Математикам было трудно понять Максвелла, из-за того, что он использовал для объяснений физический язык.

Существование в свободном безграничном пространстве электромагнитного излучения и его распространение со скоростью света было доказано в 1887 году Генрихом Герцем. Он провел опыты и описал возможность передачи электромагнитных волн на расстояние без проводов с помощью созданных им генератора и резонатора.

Теория Ма́ксвелла дождалась следующего поколения физиков, в первую очередь Хендрика Лоренца, чтобы раскрыть свою силу. Лоренс, выпускник уже упомянутого выше Лейденского университета, выдвинул идею, что на магнитные и электрические свойства окружающей среды оказывают мельчайшие носители зарядов – электроны. В 1875 году он защитил докторскую диссертацию, где центральная роль была отведена именно этим элементарным частицам. Сами электроны будут открыты только через 20 лет. Теория Максвелла превратится в теорию Максвелла-Лоренца: «Ничто не рождается на пустом месте».

Теория относительности Эйнштейна появится на свет именно благодаря этим научным воззрениям.

Принятие миром существование неосязаемых электромагнитных полей произошло после того, как появились первые радиопередатчики и радиоприемники.

В каждой стране есть свои герои. В споре, кто первый изобрел радио: Никола Тесла, Гульельмо Маркони или Александр Попов, возможно и Оливер Лодж, победителем все равно останется Генрих Герц. Просто ни Максвелл, ни Герц не задумывались о полезности своей работы. Такая мысль не приходила им в головы. Максвелл вообще стал вторым Менделем. Признание работ пришло после его смерти.

Часть материала подготовлено по книге: Лебедев В.И. «Электричество, магнетизм и электротехника в их историческом развитии. Дофарадеевский период». Москва-Ленинград: Технико-теоретической литература, 1937. - 179 с.

Александр Платонов

 

Другие статьи автора: 

С радиацией по жизни

Коллекция без претензий

Что в имени моем тебе…

Из историии мореплавания

Все гениальное просто. Или нет?

Едут-едут по Пекину наши казаки

Созвездие кактусов

Исаак Ньютон и его яблоко

Певец русской природы

А рельсы-то, как водится, у горизонта сходятся

Мятежный «Баунти». По следам золотоносного «Оскара»

Красота и привлекательность Фибоначчи

Из истории изобретения автомобиля

Отсюдова и дотудова. Почему мы так измеряем

Первая энциклопедия математических знаний России

Вильгельм Рентген и его всепроникающие Х-лучи

Самое непростое простое солнечное вещество

От Ламарка до… Ламарка



Комментировать статью:
Имя:
Комментарий:
Защитный код:



  • Бабочки в архитектуре и скульптуре мира, отраженной в филателии
  • Филателистическая программа XII Всемирного фестиваля молодёжи и студентов
  • По следам наших публикаций. Не каталожные разновидности цвета
  • Фестиваль молодежи — фестиваль мира
  • Почтовые призраки. Свободное государство Акри
  • К 240-летию со дня рождения архитектора Лео фон Кленце
  • Обзор почтовых марок за февраль 2024 года
  • История открытки. Двухсторонние маркированные карточки
  • Круглый стол. Загадка одной марки
  • Филателистические выставки эпохи модерна. Опыт культурологической реконструкции
  • Спорт в пожарной охране
  • По следам наших выступлений. Кинешма на марках и конвертах
  • Юбилей русского архитектора Гёдике
  • Рубрика «Достучаться до САМОГО». Юбилей Пушкина
  • Почтовые призраки. Остров Роз
  • Как рождается «редкость»?
  • Пожарная техника в филателии
  • Марки рассказывают о стиле граффити
  • Охотники за светом
  • Спортивный дух и филателистический азарт
  • Профессия - пожарный
  • История Суздаля в искусстве почтовой миниатюры
  • Москва, я думал о тебе!
  • Острова, «призраки» и... козы
  • Китайский Новый год в филателии
  • Российской академии наук — 300 лет
  • История в марке
  • Филателия — больше, чем увлечение
  • Самая дорогая марка вашей коллекции
  • История Сталинградского театра
  • Люди - как цветы
  • Малая Родина. Курская область на почтовых марках
  • Наш Сталинград. Помним и гордимся
  • Открытие экспозиции «Пожарная охрана на почтовых марках и конвертах»
  • Сталинградская битва – сражение, изменившее ход войны
  • С 300-летием, Монетный двор!!!
  • Итоги голосования
  • Обзор почтовых марок за январь 2024 года
  • Как мы пришли в Филателию!
  • Дорогу осилит идущий...
  • Малая Родина. Рыбинск на почтовых конвертах и марках
  • Космос под увеличительным стеклом
  • Рубрика «Достучаться до САМОГО». Эстафета поколений
  • Филателистический Саров
  • Россия или Гвинея Биссау
  • Прошло шестьдесят лет...
  • Филателистическая пушкиниана 2024
  • XV научно-практический семинар по истории почты, филателии и филокартии
  • Рубрика «Достучаться до САМОГО». К 100-летию со дня рождения В.П. Макеева
  • Первополосные открытки
  • Бесконечность в бесконечно малом. Искусство самоподобия
  • К юбилею архитектора Монигетти
  • Олимпийские творцы
  • Почтовые призраки. Тайна «марок мормонов»
  • Национальное достояние России на почтовых марках
  • Природа как художница волшебных узоров на крыльях бабочек и мотыльков
  • Коллаж в филателии
  • Малая Родина. Моя Тюмень
  • Cамая красивая марка SEPAC 2023
  • Саров – моя малая Родина!
  • Необычные открытки про Рождество
  • … И чтобы моя коллекция не пропала
  • История открытки. Новогодние выпуски
  • Первый советский новогодний конверт
  • Самая неудачная марка 2023 года
  • Новогодние и рождественские открытки начала XX века
  • ВНИМАНИЕ! Конкурс! А скоро Новый Год!
  • Новогодние марки в России!
  • Новый год в советской филателии
  • Целительница ран душевных
  • Потомки викингов
  • Конкурс «Достучаться до САМОГО». Юбилей Б.Л. Модзалевского
  • Конкурс «Достучаться до САМОГО». Положение о знаках почтовой оплаты и специальных почтовых штемпелях
  • Чем запомнился 2023 год в Филателии?
  • Итоги филателистического 2023 года
  • К юбилею архитектора Адама Менеласа
  • Оп-арт в филателии
  • История, случившаяся сто лет назад
  • Как Александр Шульгин отправил марки в космос
  • Обзор почтовых марок за декабрь 2023 года
  • Снегири прилетели...
  • Конкурс «Достучаться до САМОГО». Гербы городов России
  • Лучшая марка 2023 года
  • «Спокойной ночи, малыши», или Ностальгия по детству
  • Гении великого вращения
  • Хочется верить в чудеса
  • Авангард в филателии. Творчество Анри Матисса
  • Истоки почты родного края. Возвратить в Уфу
  • Московские загадки
  • Электричество, которое сначала открыли, а затем изобрели
  • Авангард в филателии. Творчество Пабло Пикассо
  • Как открыть Кружок юных филателистов
  • Огюст Бурди и его марки
  • «Коллекционирование – это весело»: вологжанка показывает коллекцию новогодних открыток
  • Джеймс Уистлер в Петербурге. Проект филателистической экскурсии
  • Почта, филателия и филокартия
  • Формирование коллекции экзотических бабочек Зоологического музея МГУ
  • Обзор почтовых марок за ноябрь 2023 года
  • Бонжур, месье Mушон!
  • От Камчатки до Калининграда
  • Загадка одной марки
  • От Ламарка до… Ламарка
  • Самый известный иркутский филателист
  • Что в городе моем? Филателистический каталог
  • Юбилей русского Леонардо
  • Авангард в филателии. Творчество Василия Кандинского
  • Романовская серия
  • «Черное золото» на почтовых марках
  • Остров Барб и его марки
  • Из истории металлов
  • Главный синоптик Красной Армии
  • Cтрана непролазных джунглей
  • Обучая – изучаем!
  • История открытки. Бланки - приглашения на свадебное торжество
  • К 335-летию со дня рождения архитектора М.Г. Земцова
  • Авангард в филателии. Творчество Эдварда Мунка
  • Переписка семьи симбирян Рогозиных на ПК первой трети ХХ века
  • Ишимбай - на конвертах
  • Орден Гвоздя
  • Почему нет детской филателии?
  • К 185-летию со дня основания Большого Кремлёвского дворца
  • История баскетбола на почтовых марках
  • Самое непростое простое солнечное вещество
  • Кинешма: купечество и традиции
  • Мотыльки России, поражающие воображение – бражники
  • Обзор почтовых марок за октябрь 2023 года
  • Можно ли доверять художникам?
  • Пьер Гранье-Деферр и его фильмы
  • История открытки. Карточки с оригинальной маркой
  • Современные труженики Арктических морей
  • Кто назначает цены на марки?
  • В Петербурге, на досуге...
  • Предпочтения карельских филателистов
  • Кинешма: искусство и филателия
  • Бабочки нашего детства в филателии
  • Кинешма: история и люди
  • К 285 летию со дня рождения Матвея Фёдоровича Казакова
  • Эмоции и впечатления
  • Что такое настоящая коллекция?
  • Люди, «перевернувшие» Землю
  • РЕЗОЛЮЦИЯ XIV Научно-практического семинара 2023 год
  • История стран Латинской Америки в почтовых марках
  • Как там у них. Есть ли филателия в Канаде?
  • XIV Научно-практический семинар «Почтовая корреспонденция как письменный источник для краеведческих исследований»
  • Хроники и Молодая Россия
  • Осенний вернисаж. Неделя почтовых коллекций - 2023
  • Юбилею архитектора Щусева посвящается
  • Золотая осень в Протвино
  • Дом-шар и марки Республики Кугельмугель
  • Авангард в филателии. Творчество Казимира Малевича

  •  на главную страницу     каталоги марок     Как заказать     Продажа     Покупка     Объявления     Новости     Полезное


    общий КАТАЛОГ всех марок
    Rambler's Top100 Рейтинг@Mail.ru